ANALISIS KESALAHAN MAGNITUDO FRF SITEM *SDOF* DENGAN METODE SINYAL *SWEPT-SINE* DALAM *SPAN* FREKUENSI 0-50 HZ

Oleh:

Asmara Yanto^{1*}, Reztu Illahi² ¹Dosen Jurusan Teknik Mesin – Fakultas Teknologi Industri – ITP ²Mahasiswa Jurusan Teknik Mesin – Fakultas Teknologi Industri – ITP Jl. Gajah Mada Kandis Nanggalo Padang, 25143, Indonesia Email: asmarayanto@gmail.com

Abstract

In this paper, analysis of error of FRF (Frequency Response Function) magnitude of Single Degree of Freedom (SDOF) system using swept-sine signals has been simulated. The used swept-sine signals are linear swept-sine, S111 swept-sine and S535 swept-sine signals. In numerical simulations have been done the analysis of dynamic magnification function of the system with aim to predict the minimum swept time (stimulus duration) in the linear swept-sine signal method, the S111 swept-sine signal method, and the S535 swept-sine signal method, which can yield an accurate the FRF's magnitude of the SDOF systems. Here, the SDOF systems were varied in the 0-50 Hz of measurement frequency span with 0.5% and 1% of damping ratio. The swept-sine signal stimulus durations were varied from 1 s to 10 s. From the analysis it can be concluded that by using the linear swept-sine signal method need to stimulate a system about 7 s if the system's resonant frequency be around mid-span 0-50 Hz of measurement frequency span. If the system's resonance frequency is not be around mid-span 0-50 Hz of measurement frequency span, then by using this method required a longer stimulus duration to obtain an accurate the FRF's magnitude. While using the S111 swept-sine signal and S535 swept-sine signal methods, an accurate FRF's magnitude can be obtained through stimulus more quickly, in which the S111 swept-sine signal method with about 3 s stimulus and the S535 swept-sine signal method with about 2 s stimulus, if the system's resonance frequency is closer to the final of 0-50 Hz frequency span.

Keywords: The FRF magnitude, linear swept-sine, S111 swept-sine, S535 swept-sine, frequency span, swept time, the error of dynamic magnification function.

Abstrak

Pada makalah ini, analisis kesalahan magnitudo FRF (Fungsi Respon Frekuensi) sistem satu derajat kebebasan (single degree of freedom atau SDOF) dengan menggunakan metode sinval swept-sine telah dilakukan. Sinyal swept-sine yang digunakan yaitu sinyal linear swept-sine, S111 swept-sine dan S535 sweptsine. Secara simulasi numerik, dilakukan analisis kesalahan fungsi perbesaran dinamik sistem dengan tujuan untuk memprediksi waktu swept minimum (lama stimulus), baik pada metode sinyal linear swept-sine maupun pada metode sinyal S111 swept-sine dan S535 swept-sine, yang dapat menghasilkan magnitudo FRF sistem SDOF yang teliti. Disini, sistem SDOF divariasikan dalam span frekuensi pengukuran 0-50 Hz dengan rasio redaman 0.5% dan 1%. Lama stimulus sinyal swept-sine divariasikan dari 1 s hingga 10 s. Dari analisis yang telah dilakukan dapat disimpulkan bahwa dengan menggunakan metode sinyal linear sweptsine diperlukan stimulus sekitar 7 s untuk sistem SDOF yang frekuensi resonansinya berada di sekitar pertengahan span frekuensi pengukuran 0-50 Hz. Jika sistem SDOF yang frekuensi resonansinya tidak berada di sekitar pertengahan span frekuensi pengukuran 0-50 Hz, maka dengan menggunakan metode ini diperlukan stimulus yang lebih lama untuk memperoleh magnitudo FRF yang teliti. Sedangkan dengan menggunakan metode sinyal S111 swept-sine maupun S535 swept-sine dapat diperoleh magnitudo FRF yang teliti dengan stimulus yang lebih cepat, di mana pada metode sinyal S111 swept-sine dengan stimulus sekitar 3 s dan pada metode sinyal S535 swept-sine dengan stimulus sekitar 2 s dapat diperoleh magnitudo FRF yang teliti apabila frekuensi resonansi sistem SDOF berada lebih dekat ke batas akhir dari span frekuensi 0-50 Hz.

Kata kunci: magnitudo FRF, *linear swept-sine*, S111 swept-sine, S535 swept-sine, span frekuensi, waktu swept, kesalahan fungsi perbesaran dinamik.

I. PENDAHULUAN

Karakteristik dinamik suatu sistem dapat

digambarkan dengan kurva magnitudo FRF (Fungsi Respon Frekuensi). Untuk memperoleh kurva magnitudo FRF ini, dilakukan pengujian FRF dengan cara mengeksitasi sistem. Alat yang biasa digunakan untuk mengeksitasi sistem adalah palu impak (impact hammer) atau shaker. Pada pengukuran FRF ini, gaya eksitasi dan respon getaran sistem diukur secara bersamaan oleh sensor-sensor yang digunakan. Dengan menggunakan instrumen penganalisis frekuensi sinyal, kedua sinyal yang terukur masing-masing ditransformasi menjadi spektrum frekuensi gaya eksitasi dan spektrum frekuensi respon getaran sistem. Perbandingan magnitudo spektrum frekuensi respon getaran sistem terhadap magnitudo spektrum frekuensi gaya eksitasi merupakan magnitudo FRF [1-4].

Eksitasi *shaker* paling banyak digunakan pada pengukuran FRF karena frekuensinya dapat dikontrol dengan baik. Untuk menghasilkan eksitasi ini dibutuhkan perangkat pengeksitasi yang terdiri atas generator sinyal, penguat daya, *shaker*, dan alat penghubung *shaker* ke sistem uji [1-5].

Ada beberapa sinyal pengontrol gaya eksitasi shaker yang dapat digunakan, tetapi sinyal linear swept-sine adalah sinyal yang paling sering digunakan. Sinyal linear swept-sine merupakan sinyal sinusoidal dengan frekuensi yang berubah secara linier terhadap waktu [5-8]. Fungsi yang mengekspresikan hubungan frekuensi sinyal linear swept-sine terhadap waktu disebut dengan fungsi *linear* swept [9-14]. Akan tetapi, pengontrolan gaya eksitasi shaker dengan sinyal linear sweptsine pada pengukuran FRF sering tidak mampu untuk menghasilkan magnitudo FRF yang teliti di sekitar ferkuensi resonansi sistem [9-13]. Padahal magnitudo FRF di sekitar frekuensi resonansi sistem lebih penting daripada di frekuensi yang lain [4]. Untuk meningkatkan ketelitian magnitudo FRF yang telah diperoleh dengan cara mengontrol gaya eksitasi shaker dengan sinyal *linear swept-sine* ini, sinyal pengontrol berupa sinyal swept-sine jenis lain telah dikembangkan, yaitu sinyal three-step sweptsine (S111 swept-sine [11,14] dan S535 *swept-sine* [12,14]).

Yanto dan Abidin [11] telah mengembangkan sinyal *three-step swept-sine* berupa sinyal *S111 swept-sine* untuk mengontrol gaya eksitasi *shaker*. Sinyal ini menghasilkan gaya eksitasi *three-step swept-sine* pada *shaker*. Secara numerik dan eksperimental, gaya eksitasi three-step swept-sine pada shaker ini, mampu meningkatkan ketelitian magnitudo FRF sistem satu derajat kebebasan (single degree of freedom atau SDOF) baik pada model sistem SDOF maupun pada sistem SDOF nyata. Selanjutnya, Yanto dan Abidin [12] mengembangkan metode sinval S535 swept-sine untuk meminimalisasi kesalahan magnitudo FRF sistem SDOF. Metode ini simulasi numerik juga mampu secara mengurangi kesalahan magnitudo FRF model sistem SDOF. Akan tetapi, penerapan sinyal S111 swept-sine [11] dan S535 swept-sine [12] ini hanya pada satu model sistem SDOF. Pada penelitian lainnya, Yanto [13] telah memaparkan pengaruh parameter modal (frekuensi resonansi dan rasio redaman) dan waktu swept terhadap magnitudo FRF sistem SDOF dengan eksitasi linear swept-sine secara numerik. Sistem SDOF divariasikan berdasarkan frekuensi resonansi dalam span pengukuran 0-40 Hz dan rasio redaman 0.5-1 % serta waktu swept divariasikan 1-30 s.

Pada makalah ini dilakukan analisis kesalahan magnitudo FRF sistem SDOF, baik dengan metode sinval *linear* swept-sine maupun dengan metode sinyal S111 sweptsine dan S535 swept-sine. Disini, sistem SDOF divariasikan dalam span frekuensi pengukuran 0-50 Hz dengan rasio redaman 0.5% dan 1 % (rasio redaman struktur secara eksperimental [4]) dan magnitudo FRF dinyatakan dalam besaran tanpa dimensi berupa fungsi perbesaran dinamik. Secara simulasi numerik, akan dilakukan analisis kesalahan fungsi perbesaran dinamik dengan tujuan untuk memprediksi waktu swept minimum, baik pada metode sinyal linear swept-sine maupun pada metode sinyal S111 swept-sine dan S535 swept-sine, yang dapat menghasilkan magnitudo FRF sistem SDOF yang teliti. Analisis terfokus pada puncak fungsi perbesaran dinamik atau pada frekuensi resonansi sistem.

II. METODE

Suatu sistem *SDOF* dengan frekuensi pribadi (ω_n) dan rasio redaman (ζ) tertentu dapat dinyatakan dalam fungsi transfer G(s) sebagai sistem orde-2 [15,16].

Analisis Kesalahan Magnitudo FRF Sitem SDOF...

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \tag{1}$$

dimana *s* adalah bilangan komplek yang dinyatakan dengan $s = \sigma + j\omega$.

Jika suatu stimulus (*input*) yang diterapkan kepada G(s) dinyatakan dengan X(s) dan respon (*output*) sistem dinyatakan dengan Y(s), maka hubungan *input-output* pada sistem *SDOF* dapat digambarkan dengan diagram blok seperti pada Gambar 1 [15,16].

Gambar 1. Diagram blok hubungan *input-output* pada fungsi transfer sistem *SDOF*.

Perbandingan Y(s) terhadap X(s) adalah sama dengan G(s) [15,16].

$$\frac{Y}{X}(s) = G(s) \tag{2}$$

Untuk memahami perilaku sistem pada kondisi *steady-state*, domain *s* pada Persamaan (3) hanya dinyatakan dengan bagian imajiner saja atau $s = j\omega$. Dengan $s = j\omega$ ini, Persamaan (2) disebut dengan FRF (Fungsi Respon Frekuensi) yang dapat dinyatakan dengan fungsi perbesaran dinamik secara teoritis $M_{teo}(\omega)$.

$$M_{teo}(\omega) = \frac{Y}{X}(j\omega) = G(j\omega)$$
$$= \frac{\omega_n^2}{\omega_n^2 - \omega^2 + j2\zeta\omega_n\omega}$$
$$= \frac{1}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right] + j\left(2\zeta\frac{\omega}{\omega_n}\right)}$$
(3)

dengan $\omega = 2\pi f$ dan $\omega_n = 2\pi f_n$, Persamaan (3) dapat ditulis kembali dalam domain frekuensi f.

$$M_{teo}(f) = \frac{1}{\left[1 - \left(\frac{f}{f_n}\right)^2\right] + j\left(2\zeta \frac{f}{f_n}\right)} \tag{4}$$

Jurnal Teknik Elektro ITP Volume 3 No. 2; Juli 2014

 $M_{teo}(f)$ merupakan fungsi komplek yang dapat dinyatakan dalam magnitudo, $|M_{teo}(f)|$ dan sudut fase, $\angle M_{teo}(f)$.

$$|M_{teo}(f)| = \frac{1}{\sqrt{\left[1 - \left(\frac{f}{f_n}\right)^2\right]^2 + \left(2\zeta \frac{f}{f_n}\right)^2}}$$
(5)

$$\angle M_{teo}(f) = -\tan^{-1} \left[\frac{2\zeta \frac{f}{f_n}}{1 - \left(\frac{f}{f_n}\right)^2} \right]$$
(6)

Frekuensi untuk puncak kurva $|M_{teo}(f)|$ pada Persamaan (5) disebut dengan frekuensi resonansi, f_r [11-13]. Hubungan f_n pada Persamaan (5) dengan f_r diekspresikan dengan

$$f_n = \frac{f_r}{\sqrt{1 - 2\zeta^2}} \tag{7}$$

Gambar 2. Contoh kurva $|M_{teo}(f)|$ sistem *SDOF* untuk $f_r = 20$ Hz dengan beberapa harga ζ .

Secara umum, sinyal *swept-sine*, x(t) dengan amplitudo X dapat ditulis dalam bentuk

Analisis Kesalahan Magnitudo FRF Sitem SDOF ...

$$x(t) = X \sin\left\{2\pi \int [f(t)] dt\right\}$$
(8)

Fungsi f(t) pada Persamaan (8) dinamakan dengan fungsi *swept*. Sinyal *linear swept-sine* mempunyai fungsi *linear swept*, sinyal S111 *swept-sine* mempunyai fungsi S111 *swept*, dan sinyal S535 *swept-sine* mempunyai fungsi S535 *swept* [11-14]. Fungsi *linear swept* $f_{lin}(t)$ dari frekuensi awal f_0 hingga frekuensi akhir f_e dengan waktu *swept* selama T_r dapat diekspresikan dengan

$$f_{lin}(t) = (f_e - f_0)\frac{t}{T_r} + f_0$$
(9)

Fungsi S111 swept ditulis dalam bentuk

$$f_{111}(t) = \begin{cases} f_{\ell a}(t) & ; \ 0 \le t < T_{a} \\ f_{\ell b}(t) & ; \ T_{a} \le t < T_{a+b} \\ f_{\ell c}(t) & ; \ T_{a+b} \le t \le T_{r} \end{cases}$$
(10)

dengan

$$f_{\ell a}(t) = \left(f_a - f_0\right) \left(\frac{t}{T_a}\right) + f_0 \; ; \; 0 \le t < T_a, \tag{11}$$

$$f_{\ell b}(t) = (f_b - f_a) \left(\frac{t - T_a}{T_b} \right) + f_a \ ; \ T_a \le t < T_{a+b} \,,$$
(12)

$$f_{\ell c}(t) = \left(f_e - f_b\right) \left(\frac{t - T_{a+b}}{T_c}\right) + f_b \quad ; \quad T_{a+b} \le t \le T_r,$$

$$\tag{13}$$

di mana T_a adalah waktu *swept* pada step-1 untuk rentang frekuensi dari f_0 sampai f_a , T_b adalah waktu *swept* pada step-2 untuk rentang frekuensi dari f_a sampai f_b , T_c adalah waktu *swept* pada step-3 untuk rentang frekuensi dari f_b sampai f_e , dan T_r adalah lama pencuplikan atau waktu rekam [12,14]. Fungsi S535 swept [13,14] ditulis dalam bentuk

$$f_{535}(t) = \begin{cases} f_{pa}(t) & ; \ 0 \le t < T_a \\ f_{cb}(t) & ; \ T_a \le t < T_{a+b} \\ f_{pc}(t) & ; \ T_{a+b} \le t \le T_r \end{cases}$$
(14)

dengan

$$f_{pa}(t) = \left\{ \left(f_{a} - f_{0} \right) \left[-8 \left(\frac{t}{T_{a}} \right)^{3} + 16 \left(\frac{t}{T_{a}} \right)^{2} -10 \left(\frac{t}{T_{a}} \right) + 3 \right] + 2 \left(f_{b} - f_{a} \right) \frac{T_{a}}{T_{b}} \left[4 \left(\frac{t}{T_{a}} \right)^{3} -8 \left(\frac{t}{T_{a}} \right)^{2} + 5 \left(\frac{t}{T_{a}} \right) - 1 \right] \right\} \left(\frac{t}{T_{a}} \right)^{2} + f_{0} ; 0 \le t < T_{a} ,$$

$$f_{cb}(t) = \left(f_{b} - f_{a} \right) \left[2 \left(\frac{t - T_{a}}{T_{b}} \right)^{2} - 3 \left(\frac{t - T_{a}}{T_{b}} \right) + 2 \right] \left(\frac{t - T_{a}}{T_{b}} \right) + f_{a} ; T_{a} \le t < T_{a+b} .$$
(16)

Analisis Kesalahan Magnitudo FRF Sitem SDOF ...

$$f_{pc}(t) = \left\{ \left(f_{e} - f_{b}\right) \left[-8 \left(\frac{t - T_{a+b}}{T_{c}}\right)^{4} + 24 \left(\frac{t - T_{a+b}}{T_{c}}\right)^{3} - 26 \left(\frac{t - T_{a+b}}{T_{c}}\right)^{2} + 11 \left(\frac{t - T_{a+b}}{T_{c}}\right) \right] + 26 \left(\frac{t - T_{a+b}}{T_{c}}\right)^{2} + 11 \left(\frac{t - T_{a+b}}{T_{c}}\right)^{3} + 2\left(f_{b} - f_{a}\right) \frac{T_{c}}{T_{b}} \left[4 \left(\frac{t - T_{a+b}}{T_{c}}\right)^{4} - 12 \left(\frac{t - T_{a+b}}{T_{c}}\right)^{3} + 13 \left(\frac{t - T_{a+b}}{T_{c}}\right)^{2} - 6 \left(\frac{t - T_{a+b}}{T_{c}}\right) + 1 \right] \right\}$$

$$\left(\frac{t - T_{a+b}}{T_{c}}\right) + f_{b} ; T_{a+b} \le t \le T_{r} .$$

$$f_{a} = 50 \text{ Hz}, f_{a} = 0.95 f_{r}, f_{b} = 1.15 f_{r}, T_{r} = 4 \text{ s}, T_{a} = 0.05 T_{r}, T_{b} = 0.75 T_{r}$$

$$\int_{0}^{0} \frac{f_{in}(t)}{f_{in}(t)} \int_{0}^{1} \frac$$

Gambar 3. Contoh $f_{lin}(t)$, $f_{111}(t)$ dan $f_{535}(t)$ dengan $f_e = 20$ Hz, $f_a = 0.95f_r$, $f_b = 1.15f_r$, $T_r = 4$ s, $T_a = 0.05T_r$, dan $T_b = 0.75T_r$.

Pada makalah ini, sistem SDOF divariasikan berdasarkan harga f_r dalam span frekuensi pengukuran 0-50 Hz ($f_0 = 0$ Hz dan $f_e = 50$ Hz) yaitu dari $f_r = 5$ Hz hingga $f_r = 45$ Hz dengan interval 5 Hz untuk setiap $\zeta = 0.5$ % dan $\zeta = 1$ % (rasio redaman struktur secara swept-sine eksperimental [4]). Sinyal divariasikan berdasarkan harga T_r yaitu dari $T_r = 1$ s hingga $T_r = 10$ s dengan interval 1 s. Jadi, di sini ada 9 buah variasi f_r , 2 buah variasi ζ , dan 10 buah variasi T_r . Analisis terfokus pada harga puncak fungsi perbesaran dinamik |M(f)| sistem SDOF dengan sinyal swept-sine.

Kesalahan harga |M(f)| terhadap harga teoritisnya di setiap f_r ditentukan dengan

$$E_{\alpha}(f_r) = \frac{|M_{teo}(f_r)| - |M(f_r)|}{|M_{teo}(f_r)|} 100\%$$
(18)

Tahapan-tahapan dalam menganalisis Kesalahan harga |M(f)| di setiap f_r adalah sebagai berikut:

- 1) Inputkan harga $f_0 = 0$ Hz dan $f_e = 50$ Hz.
- 2) Hitung harga $|M_{teo}(f)|$ sistem *SDOF* untuk setiap variasi f_r dan ζ sepanjang f dari f_0 hingga f_e .
- 3) Generate fungsi swept f(t) untuk setiap variasi T_r sepanjang t dari 0 hingga T_r .

Untuk setiap $f_{111}(t)$ dan $f_{535}(t)$, pilih harga $f_a = 0.95f_r$, $f_b = 1.15f_r$, $T_a = 0.05T_r$, dan $T_b = 0.75T_r$ [11-13].

4) Generate sinyal swept-sine x(t)dengan amplitudo X = 1 untuk setiap f(t).

Jurnal Teknik Elektro ITP Volume 3 No. 2; Juli 2014

- 5) Tentukan respon setiap sistem SDOF, y(t) terhadap masing-masing stimulus x(t).
- 6) Tentukan kesalahan harga magnitudo fungsi perbesaran dinamik |M(f)|untuk setiap stimulus x(t) dengan

$$|M(f)| = \frac{|Y(f)|}{|X(f)|} = \frac{|\mathcal{F}[y(t)]|}{|\mathcal{F}[x(t)]|}$$
(19)

di mana \mathcal{F} adalah metode transformasi Fourier.

- 7) Analisis setiap kesalahan puncak |M(f)| di f_r .
- 8) Dokumentasikan semua harga kesalahan puncak |M(f)| di f_r .

III. HASIL DAN PEMBAHASAN

Harga kesalahan puncak |M(f)| di f_r diperlihatkan pada Gambar 4-9.

Gambar 4. Harga kesalahan puncak $|M_{lin}(f)|$ di f_r untuk setiap sistem *SDOF* dengan variasi f_r dan $\zeta = 0.5$ %.

Gambar 5. Harga kesalahan puncak $|M_{111}(f)|$ di f_r untuk setiap sistem *SDOF* dengan variasi f_r dan $\zeta = 0.5$ %.

Gambar 6. Harga kesalahan puncak $|M_{535}(f)|$ di f_r untuk setiap sistem *SDOF* dengan variasi f_r dan $\zeta = 0.5$ %.

Gambar 7. Harga kesalahan puncak $|M_{lin}(f)|$ di f_r untuk setiap sistem *SDOF* dengan variasi f_r dan $\zeta = 1$ %.

Gambar 8. Harga kesalahan puncak $|M_{111}(f)|$ di f_r untuk setiap sistem *SDOF* dengan variasi f_r dan $\zeta = 1$ %.

Gambar 9. Harga kesalahan puncak $|M_{535}(f)|$ di f_r untuk setiap sistem *SDOF* dengan v ariasi f_r dan $\zeta = 1$ %.

Pada metode sinyal *linear swept-sine*, dengan T_r sekitar 7 s dan harga f_r sistem *SDOF* berada di tengah *span* frekuensi pengukuran diperoleh harga kesalahan puncak |M(f)| di f_r yang minimum untuk $\zeta = 0.5$ %. Sedangkan untuk harga kesalahan puncak |M(f)| di f_r yang minimum untuk $\zeta = 1$ %, diperoleh dengan T_r sekitar 3 s dan harga f_r sistem *SDOF* berada di tengah *span* frekuensi pengukuran sebagaimana yang diperlihatkan pada Gambar 10.

Gambar 10. Kontur harga kesalahan puncak $|M_{lin}(f)|$ di f_r

Gambar 11. Kontur harga kesalahan puncak $|M_{111}(f)|$ di f_r

Pada metode sinyal S111 *swept-sine*, dengan T_r sekitar 3 s dan harga f_r sistem *SDOF* berada lebih dekat dengan f_e pengukuran diperoleh harga kesalahan puncak |M(f)| di f_r yang minimum untuk $\zeta = 0.5$ %. Sedangkan untuk harga kesalahan puncak

|M(f)| di f_r yang minimum untuk $\zeta = 1$ %, diperoleh dengan T_r sekitar 1 s dan harga f_r sistem *SDOF* berada lebih dekat dengan f_e pengukuran sebagaimana yang diperlihatkan pada Gambar 11. Pada metode sinyal S535 swept-sine, dengan T_r sekitar 2 s dan harga f_r sistem SDOF berada lebih dekat dengan f_e pengukuran diperoleh harga kesalahan puncak |M(f)| di f_r yang minimum untuk $\zeta = 0.5$ %. Sedangkan untuk harga kesalahan puncak

|M(f)| di f_r yang minimum untuk $\zeta = 1$ %, diperoleh dengan T_r sekitar 1 s dan harga f_r sistem *SDOF* berada lebih dekat dengan f_e pengukuran sebagaimana yang diperlihatkan pada Gambar 12.

Gambar 12. Kontur harga kesalahan puncak $|M_{535}(f)|$ di f_r

IV. KESIMPULAN

Dari analisis kesalahan magnnitudo FRF sistem *SDOF* dengan sinyal *swept-sine* dalam *span* frekuensi 0-50 Hz dapat diambil kesimpulan sebagai berikut:

- Pada metode sinyal *linear swept-sine* sering menghasilkan magnitudo FRF yang tidak teliti apabila frekuensi resonansi sistem tidak berada di tengah *span* frekuensi pengukuran 0-50 Hz, sehingga dengan metode ini perlu dilakukan stimulus dengan waktu yang lama. Jika frekuensi resonansi sistem berada di tengah *span* frekuensi pengukuran 0-50 Hz, maka untuk menghasilkan magnitudo FRF yang teliti memerlukan waktu stimulus sekitar 7 s.
- Pada metode sinyal S111 swept-sine dengan stimulus sekitar 3 s dan pada metode sinyal S535 swept-sine dengan stimulus sekitar 2 s dapat diperoleh magnitudo FRF yang teliti apabila frekuensi resonansi sistem SDOF berada lebih dekat ke batas akhir span frekuensi 0-50 Hz.

REFERENSI

[1] M. A. Peres, *et al.*, "Practical Aspects of Shaker Measurements for Modal

Jurnal Teknik Elektro ITP Volume 3 No. 2; Juli 2014

Testing," in *Proceeding of ISMA 2010*, 2010, pp. 2539-2550.

- [2] D. Cloutier, et al., "Shaker/Stringer Effect on Measured Frequency Response Functions," presented at the 27th IMAC (International Modal Analysis Conference), Orlando, Florida, 2009.
- [3] U. Füllekrug, *et al.*, "Measurement of FRFs and Modal Identification in Case of Correlated Multi-Point Excitation," *Shock and Vibration*, vol. 15, pp. 435-445, 2008.
- [4] K. G. McConnell, Vibration Testing: Theory and Practice. New York: John Wiley & Sons Inc., 1995.
- [5] N. Haritos, "Swept Sine Wave Testing of Compliant Bottom-Pivoted Cylinders," in *Proceedings of the First* (1991) International Offshore and Polar Engineering Conference, Edinburgh, United Kingdom, 1991.
- [6] J. Zhuge, Advanced Dynamic Signal Analysis. Santa Clara: Crystal Instruments Corp., 2009.
- [7] N. Haritos, "The Characteristics of Dynamic Systems via The Swept Sine Wave Technique," *Mathematics and*

Analisis Kesalahan Magnitudo FRF Sitem SDOF...

Computers in Simulation, vol. 28(2), pp. 111-120, 2002.

- [8] N. Baoliang and Y. Xia, "A FFT Based Variety Sampling Rate Sine Sweep Vibration Controller," *IEEE* 2003 International Conference on Neural Networks & Signal Processing, vol. 2, pp. 1714-1718, 2003.
- [9] G. Gloth and M. Sinapsis, "Analysis of Swept-Sine Runs During Modal Identification," *Mechanical Systems* and Signal Processing, vol. 18, pp. 1421–1441, 2004.
- [10] G. Gloth and M. Sinapsis, "Influence and Characterisation of Weak Non-Linearities in Swept-Sine Modal Testing," *Aerospace Science and Technology*, vol. 8, pp. 111-120, 2004.
- [11] A. Yanto and Z. Abidin, "Numerical and Experimental Study of Swept-sine Excitation Control Method To Increase Accuracy of the FRF Measurement," in *Proceeding of SNTTM and Thermofluid IV*, Yogyakarta, 2012, pp. 2096-2101.
- [12] A. Yanto and Z. Abidin, "Developtment of Swept-sine Excitation Control Method to Minimize The FRF Measurement Error," *MEVJournal*, vol. 3, pp. 57–64, 2012.
- [13] A. Yanto, "Analysis of Swept Time and Modal Parameter Effect on FRF's Magnitude Error of SDOF System Using Linear Swept-Sine Excitation," *Momentum Journal*, vol. 14, pp. 18-24, 2013.
- [14] A. Yanto, "Validasi Sinyal Three-Step Swept-Sine pada Virtual Signal Generator dengan Perangkat Lunak LabVIEW," Jurnal Teknik Eletro, vol. 2, no. 2, pp. 28-37, 2013.
- [15] K. Ogata, *Modern Control Engineering*. New Jersey: Prentice-Hall Inc., 2002.
- [16] J. Golten and A. Verwer, *Control System Design and Simulation*. Singapore: McGraw-Hill., 1992.